An Evaluation of Mahalanobis-Taguchi System and Neural Network for Multivariate Pattern Recognition
نویسندگان
چکیده مقاله:
The Mahalanobis-Taguchi System is a diagnosis and predictive method for analyzing patterns in multivariate cases. The goal of this study is to compare the ability of the Mahalanobis- Taguchi System and a neural-network to discriminate using small data sets. We examine the discriminant ability as a function of data set size using an application area where reliable data is publicly available. The study uses the Wisconsin Breast Cancer study with nine attributes and one class.
منابع مشابه
AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION
A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...
متن کاملan improved controlled chaotic neural network for pattern recognition
a sigmoid function is necessary for creation a chaotic neural network (cnn). in this paper, a new function for cnn is proposed that it can increase the speed of convergence. in the proposed method, we use a novel signal for controlling chaos. both the theory analysis and computer simulation results show that the performance of cnn can be improved remarkably by using our method. by means of this...
متن کاملThe Mahalanobis-Taguchi system - Neural network algorithm for data-mining in dynamic environments
Data-mining analysis has two important processes: searching for patterns and model construction. From previous works finding that the Mahalanobis–Taguchi System (MTS) algorithm is successful and effective for data-mining. Conventional research in searching for patterns and modeling in data-mining is typically in a static state. Studies using a dynamic environment for data-mining are scarce. The...
متن کاملOptimal Feature Selection of Taguchi Character Recognition in the Mahalanobis-Taguchi System using Bees Algorithm
The Mahalanobis-Taguchi System (MTS) is a data mining method employing Mahalanobis distance (MD) and Taguchi′s Robust Engineering philosophy to explore and exploit data in a multidimensional system. The MD calculation provides a measurement scale to discriminate sample data and gives an approach of measuring the level of severity among them. One unique feature of MTS lies its robustness to asse...
متن کاملNeural Network Based Recognition System Integrating Feature Extraction and Classification for English Handwritten
Handwriting recognition has been one of the active and challenging research areas in the field of image processing and pattern recognition. It has numerous applications that includes, reading aid for blind, bank cheques and conversion of any hand written document into structural text form. Neural Network (NN) with its inherent learning ability offers promising solutions for handwritten characte...
متن کاملModified Mahalanobis Taguchi System for Imbalance Data Classification
The Mahalanobis Taguchi System (MTS) is considered one of the most promising binary classification algorithms to handle imbalance data. Unfortunately, MTS lacks a method for determining an efficient threshold for the binary classification. In this paper, a nonlinear optimization model is formulated based on minimizing the distance between MTS Receiver Operating Characteristics (ROC) curve and t...
متن کاملمنابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ذخیره در منابع من قبلا به منابع من ذحیره شده{@ msg_add @}
عنوان ژورنال
دوره 1 شماره 2
صفحات 139- 150
تاریخ انتشار 2007-09-01
با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.
میزبانی شده توسط پلتفرم ابری doprax.com
copyright © 2015-2023